Teaching materials Deliverable 2. Dynamic Burnishing Analysis

MISCE project

Mechatronics for Improving and Standardizing Competences in Engineering

Competence: Mechanical systems

Workgroup: RzuT, UNICA, UCLM, UNICAS

This document corresponds to the first burnishing exercise for the competence 'Mechanical Systems'. 'Exercise 2 - Dynamic Burnishing Analysis'

Version: 1.0

Date: December 6th, 2024

Visit https://misceproject.eu/ for more information.

				1 - 1 - 1 - 1
Inc	\square	$\mathbf{O}\mathbf{I}$	COD'	TANTE
		OI.	COLL	tents

mac	on or contonio	
1 Dy	namic Burnishing of a Shaft for Two Indentation Patterns	2
1.1	Objective of the Exercise	2
1.2	Task Description	2
1.3	Expected Results	4
Inde	ex of figures	
Fig. 1 N	Main menu	3
Fig. 2 [Dynamic burnishing menu	3

1 Dynamic Burnishing of a Shaft for Two Indentation Patterns

1.1 Objective of the Exercise

- Analyse the impact of dynamic indentation on the depth and distribution of indentations on the shaft surface.
- Compare two different indentation patterns produced during dynamic indentation.

1.2 Task Description

- 1. Move the tip of the burnisher towards the workpiece until it makes contact. Read the value of force F (or spring deformation Δ) when the mechanism's arms are fully extended (this represents the additional static force applied to the workpiece by inner spring compression).
- 2. Set the servo angular velocity to, for example, 500 rpm
 - a. On the HMI, select the Dynamic option (Fig. 1, 1) to initialize the Dynamic burnishing process.
 - b. Enable the motor by ticking the Enable Motor checkbox (Fig. 2, 1).
 - c. Use the slider (Fig. 2, 2) to set the maximum Burnisher servo angular velocity.
 - d. Alternatively, input the angular velocity value manually in the text box (Fig. 2, 3).
- 3. Start the shaft rotation (n) and engage the lathe feed (t).
- 4. The dynamic indentation process is conducted in two variants. Pointwise indentation at specified intervals along the shaft axis, producing indentations with different spacing.
- **Pattern 1:** n = 1rev/3mm, ω = 300 rev/min, t = 0.5 mm
- **Pattern 2:** n = 1rev/3mm, ω = 500 rev/min, t = 0.5 mm
 - o Burnisher servo angular velocity (ω),
 - \circ Rotational speed of the shaft (n),
 - Burnisher head pressing depth (t).
- 5. Perform two experiments over one full rotation of the shaft:
 - To stop the experiment, set the angular velocity to 0 and disable the motor using Enable Motor checkbox.

Fig. 1 Main menu

Fig. 2 Dynamic burnishing menu

- 6. Measure the depth of the indentations (δ) and their distribution on the shaft.
- 7. Perform theoretical calculations according to the previously presented theory:
 - Depth of indentation:

$$\delta = \sqrt{\frac{mv_d^2}{2\pi RH'}}$$

Maximum force:

$$F_{\mathsf{max}} = v_d \sqrt{2\pi R H m}.$$

The velocity v_d is calculated based on the burnisher's geometry and the burnisher servo's rotational velocity ω , using the equation:

$$v_D(\varphi) = \omega \left[-a\sin(\varphi) - \frac{a^2\sin(\varphi)\cos(\varphi)}{\sqrt{b^2 - a^2\sin^2(\varphi)}} \right]$$

8. The results of the calculations are compared with the experimental results, considering differences in the indentation depth and distribution for both patterns.

1.3 Expected Results

- Comparison of the depth and distribution of the indentation for both dynamic indentation patterns.
- Graphs showing the relationship between indentation depth and process parameters (ω, n, δ) .
- Assessment of which indentation pattern provides better surface quality and uniformity of the shaft using a profilometer.